
ECE591Q Machine Learning Journal Paper. Fall 2005.

Implementation of Breiman’s Random Forest Machine Learning
Algorithm

Frederick Livingston

Abstract

This research provides tools for exploring Breiman’s Random Forest algorithm.
This paper will focus on the development, the verification, and the significance of
variable importance.

Introduction

A classical machine learner is developed by collecting samples of data to represent the
entire population. This data set is usually subdivided into two or more dataset. Part of
the dataset set is commonly use for developing the machine learner, and the remaining
data is use for evaluation. Often this data set is imbalanced; the data consists of only a
very small minority of the data. Imbalanced machine learners tend to perform poorly
with the classification of fraud detection, network intrusion, rare disease diagnosing, etc
[1, 2]. This is due to imbalanced sampling during developing the machine learner.
During the testing phase these rare cases are unseen during the training phase and are
usually misclassified. Leo Breiman, a statistician from University of California at
Berkeley, developed a machine learning algorithm to improve classification of diverse
data using random sampling and attributes selection. This project involved the
implementation of Breiman’s random forest algorithm into Weka. Weka is a data
mining software in development by The University of Waikato. Many features of the
random forest algorithm have yet to be implemented into this software.

Background

The random forest machine learner, is a meta-learner; meaning consisting of many
individual learners (trees). The random forest uses multiple random trees classifications
to votes on an overall classification for the given set of inputs. In general in each
individual machine learner vote is given equal weight. In Breiman’s later work, this
algorithm was modified to perform both un-weighted and weighted voting. The forest
chooses the individual classification that contains the most votes. Figure 1. below is a
visual representation of the un-weighted random forest algorithm.

Figure 1. Meta Learners [3]

Individual random tree machine learners are grown in the following manner:

Livingston Page 1 of 13

ECE591Q Machine Learning Journal Paper. Fall 2005.

1. A data set [inbag] is formed by sampling with replacement members from the
training set; this technique is often referred to as “bootstrapping”. The number of
examples in the [inbag] data set is equal to that of the training data set. This new
data set may contain duplicate examples from the training set. Using the
bootstrapping technique, usually one third of the training set data is not present
in the [inbag]. This left over data is known as the out-of-bag data [oob].

Figure 2. Sample with Replacing

2. A random number of attributes are chosen for each tree. These attributes form

the nodes and leafs using standard tree building algorithms.

3. Each tree is grown to the fullest extent possible without pruning.

This process is repeated to develop multiple individual random trees learners. After the
development of the tree, the out-of-bag examples are used to test the individual’s trees
as well as the entire forest. The average misclassification over all trees is known as the
out-of-bag error estimate. This error estimate is useful for predicting the performance of
the machine learner with out involving the test set example. This information could be
found useful in determining the weights of the individual trees classification in the
weighted random forest learner.

Variable Importance

An important feature of Breiman’s algorithm is the variable importance calculation.
This algorithm analyzes each attribute and reveals the importance of the attribute in
predicting the correct classification of the random forest machine learner. The user then
could filter out unnecessary attributes which would save time during data collecting and
experimental run time. This algorithm first computes untouched correct count, the
number of correct classification using the out-of-bag data as its test set. The values of
the attributes are then randomly permuted in the out-of-bag examples. This new data set
is then tested for correct classification. The average of this number over all trees in the
forest is the raw importance score for the particular attribute. This algorithm is
explained in more details in the implementation section.

Livingston Page 2 of 13

ECE591Q Machine Learning Journal Paper. Fall 2005.

treesofnumber
countiablecountuntouched

ceimporraw m
miable __

var_
tan_][var

−
=

Eqn. 1: raw importance calculation

A low raw importance score, a score near zero, indicates a poor relationship between
given attribute and correct classification. A positive importance score indicates that the
given variable is important for correct classification

Implementation of Variable Importance into Weka

The implementation of the variable importance required the modification of
weka.classifiers.meta.Bagging.java and weka.classifiers.trees.RandomForest.java. To
leave the original code intact, two new classes where created called BaggingExt and
RandomForestExt. Individual trees are created with the call to the
weka.classifiers.meta.Bagging.buildClassifier (Instances data) method, where Instances
data is the training dataset. This method builds the individual trees and stores them in
the object m_Classifiers[j], where j is the index of the tree. This method also stores the
out-of-bag examples in the array of instances oobData[j]. Each individual tree has its
own set of out-of-bag examples which can be obtain using by the index j.

Figure 3: Tree Objects

Storage of the out-of-bag examples is an important step for computing variable
importance. Variable importance is performed in
weka.classifiers.meta.Bagging.calcImportance(). The first step in calculation the
variable importance is to obtain a correct classification count of the entire forest using
out-bag-examples as the test sets. This value is stored in the variable correctSum. After
the computation of the correctSum, each attribute in the dataset is created with a
permuted value for the given attribute. For example: The classical Weather.arff dataset
has four input attributes (outlook, temperature, humidity, and windy) and one output
attribute play. Let pretend a node in the forest (m_Classifier[j]) has the out-of-bag
dataset in Table1 column 1. Permuting the attribute, outlook, would have the result

Livingston Page 3 of 13

ECE591Q Machine Learning Journal Paper. Fall 2005.

located in column 2 of Table1. This attribute is permuted throughout all nodes in the
entire forest.

Table 1.
Original Out-of-bag Instance Modified Out-of-Bag Instance
@data
sunny,hot,high,FALSE,no
rainy,mild,high,FALSE,yes
rainy,cool,normal,TRUE,no
sunny,cool,normal,FALSE,yes
sunny,mild,normal,TRUE,yes

@data
overcast,hot,high,FALSE,no
sunny,mild,high,FALSE,yes
sunny,cool,normal,TRUE,no
rainy,cool,normal,FALSE,yes
sunny,mild,normal,TRUE,yes

If the attribute is nominal, the value is randomly picked from the defined selection of
values in the arff file. If the attribute is numeric or real the value is selected using the
output from the random number generator. This newly modified example is then
executed down the tree for classification. The modified out-of-bag correct classification
count is stored in the variable rawScore. If the variable is important the correct
classification count should vary from the original count, correctSum. This procedure is
repeated for every attribute in the training set.

Using Variable Importance in Weka

The newly added features of the Random Forest can be access by selecting the
RandomForestExt Classifier from the Weka Explorer. The results from the variable
importance calculation are appended to the classifier output.

Figure 3. Weka Screenshot

Livingston Page 4 of 13

ECE591Q Machine Learning Journal Paper. Fall 2005.

Figure 3. display the screenshot for the extend version of the random forest algorithm.
The extended version is executed similar to the original version with a few
modifications in the parameters. The newly added parameters consist of
displayImpDebug, displayTrees, and importance.

 displayImpDebug, Controls whether or not to display variable importance
debugging information. Setting this value True will display information similar
to the items in Table1. (Note: Increase required memory)

 displayTrees, Controls whether or not to display the individual trees

 importance, Controls whether or not to calculate and display variable important

Verification of Variable Importance

Validation of the variable importance implementation was performed by comparing the
results of the Weka’s output to the results from Breiman’s random forest paper of 2001.
Breiman’s paper included two example calculations of variable importance. In the first
example, variable importance was computed using the Diabetes data test, with 1000
trees. Figure 4. displays the output from Breiman’s paper and Figure 5. displays the
output from Weka. Comparing the two outputs there is similar behavior in the variable
importance. In both figures the second attribute is significantly more important to the
correct classification.

Figure 4. Breiman’s Diabetes Output [1]

Livingston Page 5 of 13

ECE591Q Machine Learning Journal Paper. Fall 2005.

Measure of Variable Importance--Diabetes Data

preg

plas

pres
skin

insu

mass

pedi
age

-5

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8

Attributes

R
aw

Sc
or

e

Figure 5. Weka’s Diabetes Output

The experiments where repeated using the Votes dataset. Figure 6. shows Breiman’s
output and Figure 7. shows Weka’s outputs for this experiment. Again the variables
importance in both figure have the same trends.

Measure of Variable Importance—Votes Data

Figure 6. Breiman’s Votes output [1]

Livingston Page 6 of 13

ECE591Q Machine Learning Journal Paper. Fall 2005.

Measure of Variable Importance--Vote Data

-10
-5
0
5

10
15
20
25
30
35
40

1 6 11 16

Attributes

R
aw

Sc
or

e

Figure 7. Weka’s Votes output

Although the Weka and Breiman’s results are very similar; the validation of the
software at this point is somewhat weak. One potential problem is that the graphs are
comparing variable importance rawscore (see Eqn 1.) to percent increase. Although
there may be some kind a relationship between the two; these comparisons are not ideal.
Another potential problem is lack of verification examples.

Random Forest Software Improvements

To properly verify the new Weka’s implementation the classifier outputs should be
compared to the output of Breiman’s code. The complete random forest algorithm is
implemented in open source Fortran 77 code. To execute his code one must hard code
the classifier parameters such as number of trees, data sets names, and etc. Then the user
must compile the code using an obsolete compiler, and format the data sets in a manner
such that it can be read by the program. Another disadvantage to his code is that Fortran
77 performs static memory allocation; meaning memory for the program is reserved at
the beginning of execution. This has an advantage for speed but could cause problems
with large data sets on computers with limit random-access-memory. Fortran 77 also
lacks features such as command line arguments and pointers. To make Breiman’s work
more user-friendly modifications/add-on were investigated.

To convert data set from and to Weka’s format (arff extension) to Breiman’s format a
java application was developed call arffConverter. This program can be executed
manually with the following command.

java –cp RandomForest.jar arffConverter [input file] [output file] [mode]

[input file], the absolute or relative path to the input file
[output file], the absolute or relative path to the where the new file will be stored
[mode], an integer that is either a one or zero.

Livingston Page 7 of 13

ECE591Q Machine Learning Journal Paper. Fall 2005.

If the mode is zero, the [input file] is converted from the Breiman’s format to Weka’s
file format. If the mode is one, the [input file] is converted from the Weka’s format to
Breiman’s file format.

Breiman’s file format contains only numerical data. Strings are given integers labels
beginning with the index of 1 and incremented once for every string instances and the
commas are replaced by spaces. Table 2. displays an example of this conversion.

Notes: Breiman’s code does not except attributes values of zero. A solution to this
is to fudge all values of zero by some small number (ex. 0 become 0.001). This
fudging is not implemented in this software and must be done manually. Most
dataset do not need this adjustment.

Weka’s arff Format Breiman’s Format
sunny,85,85,FALSE,no
sunny,80,90,TRUE,no
overcast,83,86,FALSE,yes
rainy,70,96,FALSE,yes
rainy,68,80,FALSE,yes

1 85 85 1 1
1 80 90 2 1
2 83 86 1 2
3 70 96 1 2
3 68 80 1 2

Table 2. Sample Conversion

The next improvement involves modification of the Fortran 77 code. Instead of the user
hard coding parameters and then compiling the program, it would be ideal to past the
parameters into the program. Fortran 77 has very little capability of performing this
task; since all arrays sizes are static and are determine during when compiling. One
solution is to initialize the arrays to a very large size. Although this is a valid solution it
is very memory intensive. The best solution is use dynamic arrays where the size of the
array can be set during runtime. This feature was made available starting with Fortran
90. Fortran 90 is almost backward compatible with Fortran 77 except for a few small
syntax changes. These formatting changes, as well as the modification from static to
dynamic arrays, where made to Breiman’s code and compiled as
random_foreset_win32.exe and random_forest_linux.bin. This executable reads in the
experiment parameters from params.dat. Table 3. displays the configuration file
(params.dat) for the Weather dataset. More details about the configuration can be found
in Breiman’s Manual.

4 14 2 1 0 0 1
4 1 10 10 1 0 0 0 4351
0 0 0 0
0 5
0 0 0
-999 0 0
0
0 0 0 0
0 0 0 0
dataset.train dataset.test

Line 1: Describe data
Line 2: Set run parameters
Line 3: Set importance options
Line 4: Set proximity computations
Line 5: Set options based on proximities
Line 6: Replace missing values
Line 7: Visualization
Line 8: Saving a forest
Line 9: Running new data down a saved forest
Line 10: datasets files

Table 3. Configuration File

Livingston Page 8 of 13

ECE591Q Machine Learning Journal Paper. Fall 2005.

To execute this program, create a text file named params.dat containing the proper
configuration data. Create dataset by hand or using the arffConverter. Then run the
appropriate random_forest executable at the command prompt. The output is written the
standard output. The program also created several files that save different parameters.
The program will generate a runtime error if the files already exist. These files must be
deleted before re-execution.

The RandomForest java application was developed to automate all of the above process
and provide a GUI to the random forest algorithm. Figure 8. provides a screenshot of
the application.

Figure 8. Random Forest GUI

The following command is used to start the application.

java -Xmx256m -jar RandomForest.jar

Small enchantments where made to RAFT, a random forest visualization tool, for easier
operation. In order to use the RAFT software the following parameters must be set in
the random forest application:

impn=1, imp=1, nscale=3 and nprox=1

To start RAFT use the following command:

java -mx300m -cp visad.jar;ij.jar;raft.jar;. Raft –norescale

Livingston Page 9 of 13

ECE591Q Machine Learning Journal Paper. Fall 2005.

Improved Verification

These new tools where then use to repeat the verification experiments. Table 4.
compares the variable importance from Weka and Breiman. Although the raw score
varies, the prediction of the two most important attributes is the same.

 Weka Breiman
Attributes RawScore RawScore

preg 5.877 2.103
plas 23.835 8.122
pres 4.037 0.286
skin 1.497 0.367
insu 3.182 0.457
mass 14.067 3.617
pedi 6.641 0.859
age 4.675 2.674
oob error% 30.69 23.697918

Table 4. Verification Diabetes Dataset

This experiment was repeated for the Votes dataset. The result from this experiment
verifies the correct implementation of the Weka’s code. In Table 5. Weka’s output and
Breiman’s output is very similar.

 Weka’s Breiman’s
Attributes RawScore RawScore

handicapped-infants -0.19 -0.134
water-project-cost-sharing 0.135 0.014
adoption-of-the-budget-resolution 7.281 5.879
physician-fee-freeze 29.706 33.128
el-salvador-aid 1.921 0.642
religious-groups-in-schools 0.146 0.02
anti-satellite-test-ban 1.011 0.228
aid-to-nicaraguan-contras 0.486 0.121
mx-missile 2.871 0.682
immigration 0.136 0.037
synfuels-corporation-cutback 2.232 1.844
education-spending 1.126 0.313
superfund-right-to-sue 0.902 0.374
crime 0.611 0.02
duty-free-exports 1.407 1.34
export-administration-act-south-
africa 0.137 0.276
oob error% 6.52 4.5977

Table 5. Verification Votes Dataset

Understanding the Importance Variable Importance

This section examines the variable importance results from the previous section in more
detail. Figure 9. displays a visual representation of the variable importance of the

Livingston Page 10 of 13

ECE591Q Machine Learning Journal Paper. Fall 2005.

Diabetes dataset. The second and the six attributes have higher importance than the
other attributes.

Figure 9. RAFT generated results from Diabetes dataset

Using 1000 trees, the out-of-bag error is 24.61%. I wanted to see how the two most
important variables affect the out-of-bag error. The experiment was re-run using only
the two most important variables, plas and mass. The incorrectly classification increased
slightly to 27.99%. The experiment was re-run using all other attributes except for plas
and mass. In this experiment I was expecting a large increase in incorrect classification.
Although the error rates increase it was much smaller than expected. These experiments
where repeat using fewer trees to see if the trends remain constants. The results from
these experiments are in Table 6. This information could be useful in developing future
learners for this particular dataset. One could gather and train the learners using only the
plas and mass attributes and receive similar results with all the attributes. This could
reduce computation time since the dataset size is reduced.

Trial Correctly Classified Instances
Incorrectly Classified

Instances
1000 Trees

all attributes 75.39% 24.61%
plas,mass 72.01% 27.99%
all others 66.15% 33.85%

100 Trees
all attributes 75.99% 24.09%
plas,mass 72.01% 27.99%
all others 66.28% 33.72%

10 Trees
all attributes 73.96% 26.04%
plas,mass 71.48% 28.52%
all others 66.54% 33.46%

Table 6. Classification Error –Diabetes dataset

Livingston Page 11 of 13

ECE591Q Machine Learning Journal Paper. Fall 2005.

Conclusion

The initial goal of this project was to fully implement Breiman’s random forest
algorithm into Weka. Due to the difficulty of his algorithm and the complexity of Weka,
only the variable importance was implemented into Weka, but alternative programs
were created. The RandomForest java application allows full access to the Breiman’s
algorithm and is compatible with the Weka’s datasets. The source code and the
executables for this project can be obtained at the links listed below.

RandomForest GUI
http://s112088960.onlinehome.us/ml2005/Zip%20of%20OTHER%20ournal%20Paper
%20Files%20NOT%20JOURNAL%20PAPER/RandomForest.zip

Weka with Variable Importance Add-ons
http://s112088960.onlinehome.us/ml2005/Zip%20of%20OTHER%20Journal%20Paper
%20Files%20NOT%20JOURNAL%20PAPER/Weka_Distro_FredLivingston.zip

RAFT Visualization Tools
http://s112088960.onlinehome.us/ml2005/Zip%20of%20OTHER%20Journal%20Paper
%20Files%20NOT%20JOURNAL%20PAPER/RAFT_Distro_Livingston.zip

Future Work

Below is a list of possible tasks that could be found beneficial:

 Implementing even more features into Weka and verifying those features.
 Modify code to deal with non-nominal classifier attributes such as reals and

numerics
 Interfacing RAFT into Weka

Acknowledgement

I would like to acknowledge the reviewers of my journal paper titled “Implementing
Breiman’s Random Forest Algorithm into Weka”. Their feedback was helpful in
approving the quality of this paper.

References

[1] Breiman, Leo
 Random Forests. January 2001

[2] Breiman, Leo and Adele Cutler
 Random Forests
 URL: http://www.stat.berkeley.edu/users/breiman/RandomForests/cc_papers.htm

Livingston Page 12 of 13

http://s112088960.onlinehome.us/ml2005/Zip%20of%20OTHER%20ournal%20Paper%20Files%20NOT%20JOURNAL%20PAPER/RandomForest.zip
http://s112088960.onlinehome.us/ml2005/Zip%20of%20OTHER%20ournal%20Paper%20Files%20NOT%20JOURNAL%20PAPER/RandomForest.zip
http://s112088960.onlinehome.us/ml2005/Zip%20of%20OTHER%20Journal%20Paper%20Files%20NOT%20JOURNAL%20PAPER/Weka_Distro_FredLivingston.zip
http://s112088960.onlinehome.us/ml2005/Zip%20of%20OTHER%20Journal%20Paper%20Files%20NOT%20JOURNAL%20PAPER/Weka_Distro_FredLivingston.zip
http://s112088960.onlinehome.us/ml2005/Zip%20of%20OTHER%20Journal%20Paper%20Files%20NOT%20JOURNAL%20PAPER/RAFT_Distro_Livingston.zip
http://s112088960.onlinehome.us/ml2005/Zip%20of%20OTHER%20Journal%20Paper%20Files%20NOT%20JOURNAL%20PAPER/RAFT_Distro_Livingston.zip
http://www.stat.berkeley.edu/users/breiman/RandomForests/cc_papers.htm

ECE591Q Machine Learning Journal Paper. Fall 2005.

[3] White, Mark
 ECE591Q-Machine Learning – Lecture slides, Fall 2005

[4] Witten, Ian and Frank, Eibe
 “Data Mining, Practical Machine Learning Tools and Techniques”

Livingston Page 13 of 13

	Abstract
	Introduction
	Background
	Variable Importance
	Implementation of Variable Importance into Weka
	Using Variable Importance in Weka
	Verification of Variable Importance
	Random Forest Software Improvements
	Improved Verification
	Understanding the Importance Variable Importance
	Conclusion
	Future Work
	Acknowledgement
	References

