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Abstract 
 
This research provides tools for exploring Breiman’s Random Forest algorithm. 
This paper will focus on the development, the verification, and the significance of 
variable importance. 

Introduction 
 
A classical machine learner is developed by collecting samples of data to represent the 
entire population. This data set is usually subdivided into two or more dataset. Part of 
the dataset set is commonly use for developing the machine learner, and the remaining 
data is use for evaluation. Often this data set is imbalanced; the data consists of only a 
very small minority of the data. Imbalanced machine learners tend to perform poorly 
with the classification of fraud detection, network intrusion, rare disease diagnosing, etc 
[1, 2]. This is due to imbalanced sampling during developing the machine learner. 
During the testing phase these rare cases are unseen during the training phase and are 
usually misclassified. Leo Breiman, a statistician from University of California at 
Berkeley, developed a machine learning algorithm to improve classification of diverse 
data using random sampling and attributes selection.  This project involved the 
implementation of Breiman’s random forest algorithm into Weka. Weka is a data 
mining software in development by The University of Waikato. Many features of the 
random forest algorithm have yet to be implemented into this software. 
 

Background 
 
The random forest machine learner, is a meta-learner; meaning consisting of many 
individual learners (trees). The random forest uses multiple random trees classifications 
to votes on an overall classification for the given set of inputs. In general in each 
individual machine learner vote is given equal weight. In Breiman’s later work, this 
algorithm was modified to perform both un-weighted and weighted voting. The forest 
chooses the individual classification that contains the most votes.  Figure 1. below is a 
visual representation of the un-weighted random forest algorithm. 

 
Figure 1. Meta Learners [3] 

 
Individual random tree machine learners are grown in the following manner: 
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1. A data set [inbag] is formed by sampling with replacement members from the 
training set; this technique is often referred to as “bootstrapping”. The number of 
examples in the [inbag] data set is equal to that of the training data set. This new 
data set may contain duplicate examples from the training set. Using the 
bootstrapping technique, usually one third of the training set data is not present 
in the [inbag].  This left over data is known as the out-of-bag data [oob]. 

 

 
Figure 2. Sample with Replacing 

 
2. A random number of attributes are chosen for each tree. These attributes form 

the nodes and leafs using standard tree building algorithms. 
 

3. Each tree is grown to the fullest extent possible without pruning. 
 
 
This process is repeated to develop multiple individual random trees learners. After the 
development of the tree, the out-of-bag examples are used to test the individual’s trees 
as well as the entire forest. The average misclassification over all trees is known as the 
out-of-bag error estimate. This error estimate is useful for predicting the performance of 
the machine learner with out involving the test set example. This information could be 
found useful in determining the weights of the individual trees classification in the 
weighted random forest learner. 
 

Variable Importance 
 
An important feature of Breiman’s algorithm is the variable importance calculation. 
This algorithm analyzes each attribute and reveals the importance of the attribute in 
predicting the correct classification of the random forest machine learner. The user then 
could filter out unnecessary attributes which would save time during data collecting and 
experimental run time. This algorithm first computes untouched correct count, the 
number of correct classification using the out-of-bag data as its test set. The values of 
the attributes are then randomly permuted in the out-of-bag examples. This new data set 
is then tested for correct classification. The average of this number over all trees in the 
forest is the raw importance score for the particular attribute. This algorithm is 
explained in more details in the implementation section.   
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Eqn. 1: raw importance calculation 
 

A low raw importance score, a score near zero, indicates a poor relationship between 
given attribute and correct classification. A positive importance score indicates that the 
given variable is important for correct classification 
 

Implementation of Variable Importance into Weka  
 
The implementation of the variable importance required the modification of 
weka.classifiers.meta.Bagging.java and weka.classifiers.trees.RandomForest.java. To 
leave the original code intact, two new classes where created called BaggingExt and 
RandomForestExt. Individual trees are created with the call to the 
weka.classifiers.meta.Bagging.buildClassifier (Instances data) method, where Instances 
data is the training dataset. This method builds the individual trees and stores them in 
the object m_Classifiers[j], where j is the index of the tree. This method also stores the 
out-of-bag examples in the array of instances oobData[j]. Each individual tree has its 
own set of out-of-bag examples which can be obtain using by the index j.  
 

 
Figure 3: Tree Objects 

 
Storage of the out-of-bag examples is an important step for computing variable 
importance. Variable importance is performed in 
weka.classifiers.meta.Bagging.calcImportance(). The first step in calculation the 
variable importance is to obtain a correct classification count of the entire forest using 
out-bag-examples as the test sets. This value is stored in the variable correctSum. After 
the computation of the correctSum, each attribute in the dataset is created with a 
permuted value for the given attribute. For example: The classical Weather.arff dataset 
has four input attributes (outlook, temperature, humidity, and windy) and one output 
attribute play. Let pretend a node in the forest (m_Classifier[j]) has the out-of-bag 
dataset in Table1 column 1. Permuting the attribute, outlook, would have the result 
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located in column 2 of Table1. This attribute is permuted throughout all nodes in the 
entire forest.  

Table 1. 
Original Out-of-bag Instance Modified Out-of-Bag Instance 
@data 
sunny,hot,high,FALSE,no 
rainy,mild,high,FALSE,yes 
rainy,cool,normal,TRUE,no 
sunny,cool,normal,FALSE,yes 
sunny,mild,normal,TRUE,yes 

@data 
overcast,hot,high,FALSE,no 
sunny,mild,high,FALSE,yes 
sunny,cool,normal,TRUE,no 
rainy,cool,normal,FALSE,yes 
sunny,mild,normal,TRUE,yes 

  
If the attribute is nominal, the value is randomly picked from the defined selection of 
values in the arff file. If the attribute is numeric or real the value is selected using the 
output from the random number generator. This newly modified example is then 
executed down the tree for classification. The modified out-of-bag correct classification 
count is stored in the variable rawScore. If the variable is important the correct 
classification count should vary from the original count, correctSum. This procedure is 
repeated for every attribute in the training set. 
 
 

Using Variable Importance in Weka 
 
The newly added features of the Random Forest can be access by selecting the 
RandomForestExt Classifier from the Weka Explorer. The results from the variable 
importance calculation are appended to the classifier output. 
 

 
Figure 3. Weka Screenshot 
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Figure 3. display the screenshot for the extend version of the random forest algorithm. 
The extended version is executed similar to the original version with a few 
modifications in the parameters. The newly added parameters consist of 
displayImpDebug, displayTrees, and importance. 
 

 displayImpDebug, Controls whether or not to display variable importance 
debugging information. Setting this value True will display information similar 
to the items in Table1. (Note: Increase required memory) 

 
 displayTrees, Controls whether or not to display the individual trees 

 
 
 importance, Controls whether or not to calculate and display variable important 

 

Verification of Variable Importance 
 
Validation of the variable importance implementation was performed by comparing the 
results of the Weka’s output to the results from Breiman’s random forest paper of 2001. 
Breiman’s paper included two example calculations of variable importance. In the first 
example, variable importance was computed using the Diabetes data test, with 1000 
trees. Figure 4. displays the output from Breiman’s paper and Figure 5. displays the 
output from Weka. Comparing the two outputs there is similar behavior in the variable 
importance. In both figures the second attribute is significantly more important to the 
correct classification. 
 

 
Figure 4. Breiman’s Diabetes Output [1] 
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Measure of Variable Importance--Diabetes Data
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Figure 5. Weka’s Diabetes Output 

 
The experiments where repeated using the Votes dataset. Figure 6. shows Breiman’s 
output and Figure 7. shows Weka’s outputs for this experiment. Again the variables 
importance in both figure have the same trends. 
 

Measure of Variable Importance—Votes Data 

 
Figure 6. Breiman’s Votes output [1]  
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Measure of Variable Importance--Vote Data
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Figure 7. Weka’s Votes output 

 
Although the Weka and Breiman’s results are very similar; the validation of the 
software at this point is somewhat weak. One potential problem is that the graphs are 
comparing variable importance rawscore (see Eqn 1.) to percent increase. Although 
there may be some kind a relationship between the two; these comparisons are not ideal. 
Another potential problem is lack of verification examples. 
 

Random Forest Software Improvements 
 
To properly verify the new Weka’s implementation the classifier outputs should be 
compared to the output of Breiman’s code. The complete random forest algorithm is 
implemented in open source Fortran 77 code. To execute his code one must hard code 
the classifier parameters such as number of trees, data sets names, and etc. Then the user 
must compile the code using an obsolete compiler, and format the data sets in a manner 
such that it can be read by the program. Another disadvantage to his code is that Fortran 
77 performs static memory allocation; meaning memory for the program is reserved at 
the beginning of execution. This has an advantage for speed but could cause problems 
with large data sets on computers with limit random-access-memory.  Fortran 77 also 
lacks features such as command line arguments and pointers. To make Breiman’s work 
more user-friendly modifications/add-on were investigated. 
 
To convert data set from and to Weka’s format (arff extension) to Breiman’s format a 
java application was developed call arffConverter. This program can be executed 
manually with the following command.  
 
java –cp RandomForest.jar arffConverter [input file] [output file] [mode] 
 
[input file], the absolute or relative path to the input file  
[output file], the absolute or relative path to the where the new file will be stored 
[mode], an integer that is either a one or zero. 
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If the mode is zero, the [input file] is converted from the Breiman’s format to Weka’s 
file format. If the mode is one, the [input file] is converted from the Weka’s format to 
Breiman’s file format. 
 
Breiman’s file format contains only numerical data. Strings are given integers labels 
beginning with the index of 1 and incremented once for every string instances and the 
commas are replaced by spaces. Table 2. displays an example of this conversion. 
 
Notes: Breiman’s code does not except attributes values of zero. A solution to this 
is to fudge all values of zero by some small number (ex. 0 become 0.001). This 
fudging is not implemented in this software and must be done manually. Most 
dataset do not need this adjustment.  
 
Weka’s arff Format Breiman’s Format 
sunny,85,85,FALSE,no 
sunny,80,90,TRUE,no 
overcast,83,86,FALSE,yes 
rainy,70,96,FALSE,yes 
rainy,68,80,FALSE,yes 

1 85 85 1 1 
1 80 90 2 1 
2 83 86 1 2 
3 70 96 1 2 
3 68 80 1 2 

Table 2. Sample Conversion 
 
 
The next improvement involves modification of the Fortran 77 code. Instead of the user 
hard coding parameters and then compiling the program, it would be ideal to past the 
parameters into the program. Fortran 77 has very little capability of performing this 
task; since all arrays sizes are static and are determine during when compiling.  One 
solution is to initialize the arrays to a very large size. Although this is a valid solution it 
is very memory intensive. The best solution is use dynamic arrays where the size of the 
array can be set during runtime. This feature was made available starting with Fortran 
90. Fortran 90 is almost backward compatible with Fortran 77 except for a few small 
syntax changes.  These formatting changes, as well as the modification from static to 
dynamic arrays, where made to Breiman’s code and compiled as 
random_foreset_win32.exe and random_forest_linux.bin. This executable reads in the 
experiment parameters from params.dat. Table 3. displays the configuration file 
(params.dat) for the Weather dataset. More details about the configuration can be found 
in Breiman’s Manual. 
 
4 14 2 1 0 0 1 
4 1 10 10 1 0 0 0 4351 
0 0 0 0 
0 5 
0 0 0 
-999 0 0 
0 
0 0 0 0 
0 0 0 0 
dataset.train dataset.test 

Line 1: Describe data 
Line 2: Set run parameters 
Line 3: Set importance options 
Line 4: Set proximity computations 
Line 5: Set options based on proximities 
Line 6: Replace missing values 
Line 7: Visualization 
Line 8: Saving a forest 
Line 9: Running new data down a saved forest 
Line 10: datasets files 

Table 3. Configuration File 
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To execute this program, create a text file named params.dat containing the proper 
configuration data. Create dataset by hand or using the arffConverter. Then run the 
appropriate random_forest executable at the command prompt. The output is written the 
standard output. The program also created several files that save different parameters. 
The program will generate a runtime error if the files already exist. These files must be 
deleted before re-execution.  
 
The RandomForest java application was developed to automate all of the above process 
and provide a GUI to the random forest algorithm. Figure 8. provides a screenshot of 
the application. 
 

 
Figure 8. Random Forest GUI 

 
The following command is used to start the application. 
 
java -Xmx256m -jar RandomForest.jar 
 
Small enchantments where made to RAFT, a random forest visualization tool, for easier 
operation. In order to use the RAFT software the following parameters must be set in 
the random forest application: 
 
impn=1, imp=1, nscale=3 and nprox=1 
 
To start RAFT use the following command: 
 
java -mx300m -cp visad.jar;ij.jar;raft.jar;. Raft –norescale 
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Improved Verification 
 
These new tools where then use to repeat the verification experiments. Table 4. 
compares the variable importance from Weka and Breiman. Although the raw score 
varies, the prediction of the two most important attributes is the same. 
 

  Weka Breiman 
Attributes RawScore RawScore 

preg 5.877 2.103
plas 23.835 8.122
pres 4.037 0.286
skin 1.497 0.367
insu 3.182 0.457
mass 14.067 3.617
pedi 6.641 0.859
age 4.675 2.674
oob error% 30.69 23.697918

Table 4. Verification Diabetes Dataset 
 
This experiment was repeated for the Votes dataset. The result from this experiment 
verifies the correct implementation of the Weka’s code. In Table 5. Weka’s output and 
Breiman’s output is very similar. 
 

  Weka’s Breiman’s 
Attributes RawScore RawScore 

handicapped-infants -0.19 -0.134 
water-project-cost-sharing 0.135 0.014 
adoption-of-the-budget-resolution 7.281 5.879 
physician-fee-freeze 29.706 33.128 
el-salvador-aid 1.921 0.642 
religious-groups-in-schools 0.146 0.02 
anti-satellite-test-ban 1.011 0.228 
aid-to-nicaraguan-contras 0.486 0.121 
mx-missile 2.871 0.682 
immigration 0.136 0.037 
synfuels-corporation-cutback 2.232 1.844 
education-spending 1.126 0.313 
superfund-right-to-sue 0.902 0.374 
crime 0.611 0.02 
duty-free-exports 1.407 1.34 
export-administration-act-south-
africa 0.137 0.276 
oob error% 6.52 4.5977 

Table 5. Verification Votes Dataset 
 
 

Understanding the Importance Variable Importance 
 
This section examines the variable importance results from the previous section in more 
detail. Figure 9. displays a visual representation of the variable importance of the 
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Diabetes dataset. The second and the six attributes have higher importance than the 
other attributes. 
 

 
Figure 9. RAFT generated results from Diabetes dataset 

 
Using 1000 trees, the out-of-bag error is 24.61%. I wanted to see how the two most 
important variables affect the out-of-bag error. The experiment was re-run using only 
the two most important variables, plas and mass. The incorrectly classification increased 
slightly to 27.99%. The experiment was re-run using all other attributes except for plas 
and mass. In this experiment I was expecting a large increase in incorrect classification. 
Although the error rates increase it was much smaller than expected. These experiments 
where repeat using fewer trees to see if the trends remain constants. The results from 
these experiments are in Table 6. This information could be useful in developing future 
learners for this particular dataset. One could gather and train the learners using only the 
plas and mass attributes and receive similar results with all the attributes. This could 
reduce computation time since the dataset size is reduced.  
 

Trial Correctly Classified Instances  
Incorrectly Classified 

Instances 
1000 Trees     

all attributes 75.39% 24.61%
plas,mass 72.01% 27.99%
all others 66.15% 33.85%

100 Trees     
all attributes 75.99% 24.09%
plas,mass 72.01% 27.99%
all others 66.28% 33.72%

10 Trees     
all attributes 73.96% 26.04%
plas,mass 71.48% 28.52%
all others 66.54% 33.46%

Table 6. Classification Error –Diabetes dataset 
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Conclusion 
 
The initial goal of this project was to fully implement Breiman’s random forest 
algorithm into Weka. Due to the difficulty of his algorithm and the complexity of Weka, 
only the variable importance was implemented into Weka, but alternative programs 
were created. The RandomForest java application allows full access to the Breiman’s 
algorithm and is compatible with the Weka’s datasets. The source code and the 
executables for this project can be obtained at the links listed below. 
 
RandomForest GUI 
http://s112088960.onlinehome.us/ml2005/Zip%20of%20OTHER%20ournal%20Paper
%20Files%20NOT%20JOURNAL%20PAPER/RandomForest.zip 
 
Weka with Variable Importance Add-ons 
http://s112088960.onlinehome.us/ml2005/Zip%20of%20OTHER%20Journal%20Paper
%20Files%20NOT%20JOURNAL%20PAPER/Weka_Distro_FredLivingston.zip 
 
RAFT Visualization Tools 
http://s112088960.onlinehome.us/ml2005/Zip%20of%20OTHER%20Journal%20Paper
%20Files%20NOT%20JOURNAL%20PAPER/RAFT_Distro_Livingston.zip
 
 

Future Work 
 
Below is a list of possible tasks that could be found beneficial: 

 Implementing even more features into Weka and verifying those features. 
 Modify code to deal with non-nominal classifier attributes such as reals and 

numerics 
 Interfacing RAFT into Weka 
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